博彩网-博彩通-百家乐-百家乐平台_百家乐_全讯网 (中国)·官方网站

學(xué)術(shù)動態(tài)

當(dāng)前位置: 首頁 - 學(xué)術(shù)動態(tài) - 正文

學(xué)術(shù)報告—Dynamical Systems on Networks and their Applications: Perspectives from Population Dynamics

閱讀量:

報 告 人:帥智圣

主 持 人:張曉穎

時    間:2019年6月14日10:00

地    點(diǎn):理學(xué)院五樓大數(shù)據(jù)實(shí)驗(yàn)室

主辦單位:理學(xué)院


報告人簡介:

帥智圣,分別于2001年和2004年在東北師范大學(xué)獲數(shù)學(xué)學(xué)士學(xué)位和應(yīng)用數(shù)學(xué)碩士學(xué)位,并于2010年在加拿大阿爾伯塔大學(xué)獲理學(xué)博士學(xué)位,后獲加拿大自然科學(xué)與工程研究委員會頒發(fā)的博士后獎(NSERC Postdoctoral Fellowship)資助,在維多利亞大學(xué)從事兩年博士后研究。從2012年8月起,任教于美國中佛羅里達(dá)大學(xué),現(xiàn)為該校數(shù)學(xué)系副教授(tenured)。主要研究興趣為微分方程、動力系統(tǒng)、及其在生物數(shù)學(xué)中的應(yīng)用。已在包括Journal of Differential Equations, Journal of Mathematical Biology, Proceedings of the American Mathematical Society, SIAM Journal on Applied Mathematics等國際著名刊物發(fā)表論文30余篇。其成果被同行廣泛引用,論文累計已被引用1700余次。獲多項(xiàng)學(xué)術(shù)、科研和教學(xué)獎勵,其中包括國家優(yōu)秀自費(fèi)留學(xué)生獎學(xué)金(中國),Izaak Walton Killam紀(jì)念獎學(xué)金(加拿大),中佛羅里達(dá)大學(xué)教學(xué)創(chuàng)新(TIP)獎。主持多項(xiàng)科研項(xiàng)目,其中包括美國國家科學(xué)基金委(NSF)和Simons Foundation科研項(xiàng)目。

觀點(diǎn)綜述:

Many large-scale dynamical systems arising from different fields of science and engineering can be regarded as coupled systems on networks. Examples include biological and artificial neural networks, nonlinear oscillators on lattices, complex ecosystems and the transmission models of infectious diseases in heterogeneous populations. Of particular interest is to investigate in what degree and fashion the dynamical behaviors are determined by the architecture of the network encoded in the directed graph. We will address this from population dynamics perspectives.

Specifically, many recent outbreaks and spatial spread of infectious diseases have been influenced by human movement over air, sea and land transport networks, and/or anthropogenic-induced pathogen/vector movement. These spatial movements in heterogeneous environments and networks are often asymmetric (biased). The effects of asymmetric movement versus symmetric movement will be investigated using several epidemiological models from the literature, and the analytical tools employed are from differential equations, dynamical systems to matrix theory and graph theory. These investigations provide new biological insights on disease transmission and control, and also highlight the need of a better understanding of dynamical systems on networks.

地址:中國吉林省長春市衛(wèi)星路6543號 

郵編:130022

吉ICP備050001994號-5

吉公網(wǎng)安備22010402000005號

百家乐赌博详解| 百家乐庄闲赢负表| 百家乐官网览| 皇冠开户网址| 正品百家乐官网网站| 柬埔寨百家乐官网的玩法技巧和规则 | 大发888作弊| 百家乐博娱乐平台| 大发888娱乐场下载英皇国际| 申博太阳城管理网| 1368棋牌游戏平台| 西贡区| 荥阳市| 栾城县| 百家乐官网游戏玩法规则| 百家乐官网挂机软件| 交城县| 百家乐官网筹码盒| 百家乐官网大| 百家乐网盛世三国| 大发888娱乐城登录| 百家乐官网网络投注| 博彩百家乐官网画谜网| 百家乐返点| 大世界娱乐城真人娱乐| 澳门百家乐官网什么规则| 2404这个房号 风水| 百家乐麻将牌| 黄山市| 百家乐官网代理荐| 百家乐博彩通| 大发888投注明升网址| 闲和庄百家乐官网娱乐平台| 威尼斯人娱乐城活动| 百家乐策略大全| 类乌齐县| 大发888亚洲城娱乐城| 孟村| 属虎与属鼠做生意好吗| 皇家一号娱乐城| 百家乐网站那个好|